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Abstract
Objective: Transcranial focused low-intensity ultrasound has the potential to noninvasively
modulate confined regions deep inside the human brain, which could provide a new tool for causal
interrogation of circuit function in humans. However, it has been unclear whether the approach is
potent enough to modulate behavior. Approach: To test this, we applied low-intensity ultrasound to
a deep brain thalamic target, the ventral intermediate nucleus, in three patients with essential
tremor.Main results: Brief, 15 s stimulations of the target at 10% duty cycle with low-intensity
ultrasound, repeated less than 30 times over a period of 90min, nearly abolished tremor (98% and
97% tremor amplitude reduction) in 2 out of 3 patients. The effect was observed within seconds of
the stimulation onset and increased with ultrasound exposure time. The effect gradually vanished
following the stimulation, suggesting that the stimulation was safe with no harmful long-term
consequences detected. Significance: This result demonstrates that low-intensity focused ultrasound
can robustly modulate deep brain regions in humans with notable effects on overt motor behavior.

1. Introduction

Low-intensity transcranial focused ultrasound has
the potential to modulate deep brain circuits in
humans entirely noninvasively [1–4]. Ultrasound
can be focused through the intact skull and scalp
into circumscribed deep brain regions [5, 6]. In
addition, arrays of transducers can focus ultra-
sound into specified brain targets programmatic-
ally, without moving the device or the subject
[5, 7]. The precise focusing on command opens
unique new possibilities to systematically mod-
ulate malfunctioning circuits in each individual.
This capability is particularly important for patients
with mental and neurological disorders for whom
the malfunctioning networks and nuclei are poorly
understood [8–13].

Effective modulation of neural circuits with
low-intensity focused ultrasound has been demon-
strated in rodents [14–16]. However, ultrasonic neur-
omodulation in humans has appeared less effect-
ive and robust [17–25]. In particular, low-intensity

ultrasoundhas yet to demonstrate observable changes
in overt, motor behavior in humans.

To test this capacity of this emerging technology,
we applied low-intensity focused ultrasound to a deep
brain thalamic target, the ventral intermediate nuc-
leus (VIM), in subjects with essential tremor. VIM is
a motor thalamic nucleus that connects motor cortex
with cerebellum and is located with the termination
of the dentatorubrothalamic tract, which mediates
motor coordination and finemotor control [26]. This
target is a primary choice for deep brain stimulation
[27–29] and ablative treatments [26] for its implic-
ation in tremor motor control, established clinical
efficacy, and relatively low risk of mood or cognit-
ive side effects [29]. We hypothesized that ultrasonic
modulation of the VIM should reduce the tremor
amplitude, just like in previous studies that used
deep brain stimulation [27–29], but now entirely
non-invasively.

We found that ultrasonic modulation of the VIM
can dramatically reduce tremor amplitude, and there
were no side effects reported by the subjects.
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2. Methods

2.1. Subjects
This study was approved and designated as non-
significant risk by the Institutional Review Board
of the University of Utah (IRB #00139661). The
candidate subjects constituted a pool of essential
tremor patients who were not considering ultra-
sound ablative treatments of the VIM. Patients were
informed of the study during a routine appoint-
ment at a movement disorder clinic. From this pool,
candidates who showed moderate-to-severe tremor
and who gave informed consent were included in
this study. Following the selection, three patients
(male, aged 69 (Subject 1), 79 (Subject 2), 46
(Subject 3)) withmoderate-to-severe essential tremor
were recruited. Participants abstained from tremor-
modulating medication, caffeine, and alcohol at least
24 h prior to the experiment.

2.2. TremorMeasurements
Tremor amplitude was quantified with a hand-worn,
MRI-compatible accelerometer (TSD109C2, Biopac
Systems). The accelerometer provides three outputs,
simultaneously measuring acceleration along the X-,
Y-, and Z-axes. The accelerometer was attached with
a velcro strap to the distal portion of the subject’s
palm (figure 1(b)). Analog signals from the acceler-
ometer were digitized and recorded outside of the
MRI room (MP150, Biopac Systems). A trigger signal
from the ultrasound transducer elements was simul-
taneously recorded to indicate when in the recordings
the transducers were emitting ultrasound.

In addition to accelerometer measurements,
a physician administered the Fahn-Tolosa-Marín
tremor rating scale [30] approximately 10min before
and after the experiment.

2.3. Task
Subjects laid in a supine position with arms rest-
ing at their side. Upon verbal command, subjects
raised their arm above their body partially abduc-
ted and extended with the elbow at approximately
30 degrees of flexion (figure 1(e), supplementary
video 1). Subjects held their arm in this position for
45 s until hearing a verbal command to rest, return-
ing the arm back down by their side. Verbal com-
mand was relayed to the subjects through earbuds.
White noise was played continuously in the earbuds
throughout the experiment to mask potential audit-
ory perception of the ultrasound [31].

During the 45 s trial, ultrasound was turned
on at the 15 s mark to acquire a baseline reading
of tremor amplitude for the trial. Ultrasound was
delivered over the next 15 s. The subjects kept their
arm raised for the final 15 s to obtain a measure of
post-stimulation tremor amplitude. The behavioral
task was repeated over the experimental session with

rest time (about 2min) in between trials and a 15min
break in the middle of the 90min session. Sham son-
ications, where no ultrasound was delivered within
the trial, were interleaved randomly.

Subjects began the session with three trials
without sonication to assess baseline level of tremor.
The median of the tremor amplitude across these tri-
als was used as the subject’s initial tremor amplitude.

2.4. Signal Analysis
The BIOPAC system digitized the accelerometer sig-
nals at 1000Hz in each dimension along with the
trigger out signal of the ultrasound hardware, which
indicated when the ultrasoundwas on. The frequency
range measured by the accelerometer extended from
DC to 500Hz, so sampling at 1000Hz was sufficient.
Prior to analyses, all accelerometer recordings were
highpass filtered with a cut-off frequency of 1Hz
(1st order Butterworth filter). These signals were ana-
lyzed for tremor power amplitude using the follow-
ing steps [32, 33]: First, we identified the pre- and
post- sonication epochs of 10 s in duration using the
recorded trigger signal. Only the final 10 s of the pre-
sonication and first 10 s of the post-sonication inter-
val were used to eliminate motion artifacts associated
with raising and lowering the subject’s hand between
the active and rest position. The sonication window
was taken as the entire 15 s window between onset
and offset. The three windows combined form a con-
tinuous time interval of trial signals considered in
subsequent analyses. Second, signals were bandpass-
filtered between 1 and 20Hz to eliminate potential
motion artifacts and frequencies above the tremor
range. Third, we integrated the power spectrum of
each individual dimension (x, y, z) of the accelero-
meter signals. And finally, we summed the integrated
power spectrum across the three dimensions, thus
obtaining the total power of the tremor amplitude
[33]. We performed all analyses offline and separately
for each condition of pre-sonication, ultrasound-on,
and post-sonication.

Tremor dynamics over the entire trial were calcu-
lated by binning the data of each epoch into windows
of 2.5 s and calculating the power spectrum of each
window. Then, we repeated the total tremor power
analysis above for each 2.5 s window, integrating the
spectrum of the accelerometer signals.

2.5. Ultrasonic System
The ultrasound array system has been described and
used previously [7, 34]. Briefly, the hardware con-
sisted of two spherically focused phased arraysmoun-
ted to a rigid plastic frame such that they were posi-
tioned opposite to each other and separated by a dis-
tance of 180mm. The array elements of both trans-
ducers had a surface area of 6mm× 6mm, and oper-
ated at a fundamental frequency of 650 kHz. Each
array had a height of 55mm and a width of 86mm,
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spanning an area of 47.3 cm2 (radius of 165mm; 126
elements; 9× 14 element grid, inter-element spacing
of 0.5mm).

The transducers were positioned over the left and
right sides of the subjects’ head and delivered ultra-
sound through the parietal and temporal bones. The
transducers were driven by a programmable system
(Vantage256, Verasonics).

2.6. Targeting
Targeting with ultrasound rests on emitting ultra-
sound from each element such that the wavefronts
arrive into the defined target at the same time to cre-
ate constructive interference. These values were estab-
lished using the knowledge of the distance from tar-
get to the transducer elements and dividing the travel
distance by the speed of sound in brain tissue. After
calculating these delays, we adjusted their value based
on themeasured speedup values through the subject’s
skull as described in previous work [7].

We performed device-to-subject registration to
find the target’s location relative to the transducers’
position. The patients’ head was immobilized with a
standard radiological thermoplastic mask (Aquaplast
RT Open Eye and Mouth Slimline U-Frame; QFix,
Avondale, PA). To coregister the transducer with
subject-specific brain anatomy, we took a standard
anatomical T1-weighted image of the subject and the
transducers (figure 1(a)). The transducer arrays’ pos-
itionwas registered to the subject’sMRI using fiducial
markers.

The position of the VIM was identified by first
finding the position of the anterior commissure
(AC) and posterior commissure (PC) of the subject’s
brain using an automatic detection algorithm [35]
(figure 1(a)). We set the focal point to a standard
15mm lateral and 6mm anterior to the posterior
commissure along the AC-PC line [36]. We stimu-
lated the VIM contralateral to the tremor-dominant
hand carrying the accelerometer. We focused the
ultrasound from the phased arrays into this location
after applying a correction for the skull attenuation
and dephasing [7]. The arrays produce an intensity
field with lateral × elevational × axial dimensions of
2.4mm× 3.6mm× 20.4mm (y, z, and x dimensions
of theMontreal Neurological Institute coordinate sys-
tem). The total field volume of 0.142 cm3 was equival-
ent to a sphere with a radius of 3.24mm [7].

2.7. Deep Brain Stimulation
The ultrasound was delivered into the target (VIM
of the thalamus) in 10ms pulses (650 kHz, 0.72MPa
peak pressure following correction for the skull) every
100ms over the 15 s total sonication duration. The
device automatically calculates the attenuation of the
ultrasound by the skull, scalp, and hair, and com-
pensates for these obstacles prior to the stimulation

[7, 37]. This correction circumvents the need for hair
shaving, so the participants’ hair was not shaved. The
frequency of 650 kHz was chosen as a comprom-
ise between higher frequencies that provide sharper
focus and lower frequencies that are less attenuated
by the skull [5]. The pressure and pulsing paramet-
ers were chosen to be similar to previous ultrasound
neuromodulation studies [38–40] while staying close
to the FDA 510(k) Track 3 guidelines [41]: ISPPA =
P2/(2ρc) = 16.12Wcm−2 and ISPTA = DC ∗ ISPPA =
1.612Wcm−2, where P is pressure, ρ is the density of
brain tissue, c is the speed of sound in the brain, and
DC is the duty cycle over the 15 s sonication window.

3. Results

We have developed an ultrasonic neuromodulation
array that enables effective and safe modulation of
deep brain circuits in humans [7, 37]. Using this
device, we now aim to address a key question in
the ultrasonic neuromodulation field, i.e., whether
low-intensity transcranial focused ultrasound can
induce observable changes in overt, motor behavior
of human subjects.

For this purpose, we capitalized on the well-
understood neural substrates associated with essen-
tial tremor, the VIM. Modulation of the VIM with
deep brain stimulation is known to substantially
reduce tremor amplitude [27, 28]. If remotely applied
ultrasound also exerts neuromodulatory effects on
this deep brain structure, we would predict a dis-
ruption to the propagating tremor signal and a sub-
sequent reduction in tremor amplitude.

Figure 1 shows the experimental setup, which
consists of the ultrasonic device (figure 1(a))
and an accelerometer that continuously measures
tremor amplitude over the tremor-dominant hand
(figure 1(b)). We harnessed the unique opportunity
to apply the approach in three subjects with essen-
tial tremor (University of Utah). In these subjects, we
applied low-intensity, low-frequency ultrasound to
the VIM for 15 s each trial at 10% duty cycle and an
average of 23 trials per subject over a period of 90min
(see Methods).

This stimulation regimen led to a substantial
reduction in the measured tremor amplitude in two
of the three subjects (figures 1(c) and 2). Compared to
the baseline tremor level, the average post-sonication
tremor amplitude in the final 10 trials of each ses-
sion was 1.9 ± 2.4%, 125 ± 98.1%, and 2.9 ±
2.1% (mean± s.d.) for subjects one, two and three,
respectively.

The difference between the tremor amplitude in
these last 10 trials compared with the baseline amp-
litudewas significant in subjects one (t12 = 23.04, p=
2.6× 10−11, two-sample t-test) and three (t12 = 6.1,
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Figure 1. Apparatus for noninvasive deep brain modulation of essential tremor. (a) Ultrasonic neuromodulation device used in
this experiment [7] consisting of two 126 element phased arrays covering the left and ride sides of head. (b) Example operation of
the device targeting the ventral intermediate nucleus (VIM) of the thalamus (green crosshair) based on anterior commissure (AC)
and posterior commissure (PC) (red) coordinates (Methods). The pink ellipse under the green crosshairs shows the
half-maximum intensity field at target, with dimensions of 2.4mm× 3.6mm× 20.4mm (y, z, and x; Montreal Neurological
Institute coordinate system) [7]. (c) An accelerometer fixed to the participant’s hand measures tremor amplitude during the
experiment. (d) Example accelerometer signals (normalized, bandpassed 1–20Hz). The three traces exemplify effects in subjects
1, 2 and 3, respectively. (e) In each trial, the subjects were asked to raise their hand above their body to capture the subject’s
tremor; the ultrasound was applied 15 s following this instruction, for 15 s. Subjects held their arm in the raised position 15 s
following the offset of the ultrasound, and subsequently rested with arms at their side. Subjects rested for a period of 1–2min
between trials and this process recurred over the 90min experiment.

p= 5.3× 10−5, two-sample t-test). There was no sig-
nificant effect in subject two (t12 =−0.46, p= 0.66,
two-sample t-test).

We observed a progressive decrease in the total
trial tremor amplitude in all three subjects over the
course of the experiment (figure 3). The tremor
amplitude decreased with the number of stimula-
tion epochs received (Subject 1: y=−0.028x+ 0.77,
p= 0.000083, R2 = 0.50; Subject 2: y=−0.026x+
1.67, p= 0.18, R2 = 0.07; Subject 3: y=−0.029x+
0.42, p= 0.004, R2 = 0.40). The decrease in tremor
over time across all subjects was significant (signi-
ficance of slope: t2 =−32.2, p= 0.00097, two-tailed
t-test). Analysis of covariance showed a significant

dependence of tremor amplitude on the sonication
number (ANCOVA: F1,64 = 10.5, p= 0.0018). We
found no significant interaction between sonication
number and subject (F2,64 = 0.03, p= 0.967), indic-
ating a consistent effect across the subjects.

We assessed these effects also on a trial-wise basis
(figure 4, supplementary movie 1), and also eval-
uated effects during sham stimulation. Compared
to the pre-stimulation tremor amplitude, post-
stimulation amplitude was reduced by 65.85 ±
43.13% (mean± s.d.) for subject 1, reduced by 91.28
± 7.88% for subject 3, and increased by 66.06 ±
130% for subject 2. Figure 4(b) shows tremor power
decreases within seconds of the ultrasound onset for
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Figure 2. Low-intensity transcranial focused ultrasound applied to the VIM nucleus of the thalamus suppresses tremor
amplitude. Mean±s.e.m. tremor amplitude in the post-sonication window averaged across the final ten stimulation trials of each
session relative to pre-treatment baseline measures, separately for each subject. The difference was assessed using a two-sample
t-test: ∗∗∗p< 0.001.

Figure 3. Durable decrease of tremor in response to
repeated stimulation. Total tremor amplitude computed
over each stimulation repetition (i.e. each trial: pre-
sonication window, sonication window, post-sonication
window (see Methods)) as a function of the number of each
stimulation repetition. The data were normalized to
baseline, so that each trace starts at the value of 1. The
dashed lines shows linear fits to the data. Stars denote the
cases in which the slope was significant (∗∗∗p< 0.001;
∗∗p< 0.01).

subject 1 and subject 3, while subject 2 showed a
moderate increase in average tremor power follow-
ing ultrasound stimulation. Sham stimulations, in
which no ultrasound was emitted, were randomly
interleaved with the verum stimulations. There was
a significant difference between the verum and sham
tremor effects in both subjects that exhibited the
effect (i.e. subjects 1 and 3: t18 = 2.40, p= 0.027 and
t31 = 3.51, p= 0.0014; two-sample t-test).

We found that repeated stimulation of the
VIM with focused ultrasound was well tolerated.
The tremor amplitude returned to pre-stimulation
state within about 20minutes following the last

stimulation, as judged by neurological examin-
ation (Methods). No adverse events were noted
and subjects did not note any side effects in
the 24 h post experiment they were monitored
for.

4. Discussion

We found that remotely applied, low-intensity ultra-
sound modulation of a deep brain nucleus involved
in essential tremor can substantially decrease tremor
amplitude. In two of three subjects, there was a nearly
complete elimination of the tremor, with amplitude
reductions greater than 95%.Therefore, low-intensity
ultrasound has the capacity to modulate overt, motor
behavior in humans.

Two principal effects were observed—transient,
in which the tremor amplitude was reduced within
seconds of stimulation onsets (figure 1(d), figure
4(b))—and cumulative, in which the tremor amp-
litude gradually decreased over the course of the
individual ultrasound doses (figure 3). Both effects
have been described in ultrasonic neuromodula-
tion literature and they commonly depend on the
total ultrasound exposure. Specifically, brief stimuli,
on the order of several seconds (our stimulus las-
ted 15 seconds in each trial), induce neuromodu-
lation effects on the order of seconds [38, 42]. On
the other hand, longer stimuli commonly produce
durable changes to functional connectivity within
the target circuits [43–46]. Beyond stimulus dura-
tion, neuromodulation effectiveness is a function of
the ultrasound frequency, pressure, pulse repetition
frequency, and duty cycle [31, 39]. The frequency
used in this study (650 kHz), while higher than
previous neuromodulation applications in humans
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Figure 4. Tremor dynamics in response to repeated stimulation. (a) Pre and post stimulation tremor total power for each subject
across all active trials. (b) Average and standard error (SEM) tremor total power dynamics throughout the trial. The yellow
rectangle indicates the ultrasound delivery window.

(<500 kHz) [47], was chosen as a tradeoff between
focal volume and the ultrasound attenuation by the
human head. The frequency was also chosen to
be compatible with an existing transcranial-focused
ultrasound surgical device [5]. Further, the skull cor-
rection method used here [37] enabled a compens-
ation for the increased attenuation of this relatively
high frequency. Previous studies validated the neur-
omodulatory efficacy of this parameter, being appro-
priate to modulate fMRI blood oxygenation level-
dependent activity at target and to induce mood
changes in subjects with major depressive disorder
[7, 34]. The pulse repetition frequency and duty
cycle were chosen to maximize acoustic intensity and
acoustic duration to enhance efficacy [48] while min-
imizing heating. We chose a pulse duration of 10ms
as a lower bound on the duration needed to elicit
neuromodulatory effects at the emitted pressure [31,
38–40], and set the pulse repetition period such as to
comply with FDA 510(k) Track 3 guidelines [41] over
the duration of the experiment. Neuromodulatory
effectiveness may also be influenced by temperat-
ure increases or enhanced acoustic radiation forces
induced by this particular setup. For these para-
meters, we estimated maximal temperature increase
using the bioheat equation, ∆T= 2αI∆t

ρC = 0.53◦C,
where α is the absorption of brain tissue (0.06f =
0.06(0.65) = 3.9 m−1), C is the specific heat of the
brain (3630 J kg−1 K−1), ρ is the density of brain
tissue (1030 kg m−3), I is the spatial peak tem-
poral average intensity (ISPTA in brain tissue (1.612
Wcm−2), and ∆t is the sonication duration (15 s)
[49]. The equation does not include heat conduction
and convection and therefore provides an upper

bound estimate on the temperature rise. Acoustic
radiation force is also considered one of the physical
mechanisms underlying effective neuromodulation.
The two opposing transducers used in this study cre-
ate a standing wave at the focus that generates a sig-
nificantly larger acoustic radiation forces than single
element transducers [50], which may enhance the
effectiveness of the neuromodulation [4, 51].

In this initial study for this particular purpose,
we have placed emphasis on safety, delivering into
the target a relatively modest amount of ultrasound
energy. The stimulation was safe and well tolerated by
all three subjects with no side effects noted. With the
transducers centered over the thalamus, we chose to
avoid active sham with unfocused or off-target stim-
ulation as performed previously [7] to mitigate the
risks of stimulating this highly interconnected area or
the surrounding deep brain structures.

The modest ultrasound exposure used in this
study led to relatively short-lived effects, on the order
of dozens of minutes. Although this effect duration
is likely not sufficient for therapeutic applications, it
is well suited for systematic dissection of neural cir-
cuits in humans. In this approach, the individual can-
didate regions can be perturbed systematically, one
by one, until identifying the targets that modulate a
given sign, symptom, or behavior most strongly. This
iterative approach is conceptually analogous to the
pre-ablation surgical planning used in high-intensity
focused ultrasound treatments for essential tremor,
which induces a significant temperature increase
(>10◦C) to inhibit target areas temporarily [5].
The neuromodulatory approach used here delivered
orders of magnitude lower ultrasound intensity [5].
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At this low level, harmful heating of the target or
the skull would not be expected [52], thus providing
a safer alternative for noninvasive manipulations of
localized brain regions in humans. This neuromod-
ulatory approach has a unique potential for causal
brainmapping, identifying the neural circuits that are
crucially involved in—as opposed to just encoding—
a given sign, symptom, or behavior. This information
could be used for diagnostic and basic science pur-
poses, as well as translational purposes such as guid-
ance of deep brain stimulation implants.

Using the same device, we recently delivered a
substantial amount of ultrasound energy, for a total
duration of 50 min of stimulation, into the subgenual
cingulate cortex of a subject with major depression
[34]. Following this exposure, we found that the
subject’s depression symptoms resolved within the
first day and the beneficial effects lasted for sev-
eral weeks [34]. Therefore, there is evidence that the
approach reported here, when delivering substan-
tially more ultrasound energy, could also provide
therapeutic benefits to patients. These durable effects
provide a unique opportunity for noninvasive reset of
the malfunctioning circuits in each individual.

There were notable effects in two of the
three subjects. The lack of an effect in one of
the subjects—or just a trend toward a decrease
over time—is likely caused by the targeting dif-
ficulties of precise registration and phase aber-
rations caused by delivering ultrasound through
the human skull. The skull can strongly aberrate
the beam, to the point that the delivered focal
coordinate can differ markedly from the intended
coordinate [37]. The VIM nucleus is approximately
4× 4× 6mm in size (x, y, z) [53],making it a difficult
to match the size of the ultrasound focus used in this
experiment (2.4× 3.6× 20.4 mm; y, z, and x dimen-
sions of the MNI coordinate system). Further, during
treatment planning, we noticed that the transducers
were set at a sharper angle to the skull in the coronal
plane, which may have accentuated the refraction of
the ultrasound beam. Given these targeting issues, it
is critical to develop MRI-based approaches, such as
MRI ARFI [54, 55], to directly visualize and valid-
ate the ultrasound targeting. The availability of such
guidance tools is expected to increase the uniform-
ity of outcomes associated with this highly precise
tool. Future studies would additionally benefit from
an active control to improve comparison with sham
and test the target specificity necessary to reduce
tremor. Stimulating the ipsilateral VIM or lateral
ventricles could provide an off-target stimulation
comparison while minimizing the risk of ultrasound
exposure to these deep brain areas. In the absence of
an active sham, future studies may improve the white
noise auditory masking used in this study by over-
laying pure tones or sham audio of ultrasound pulses
over white noise timed to the ultrasound stimulation

parameters [56]. Nevertheless, the tremor reduc-
tion reported in this study outlived the ultra-
sound stimulation window, which suggests that the
effects were not due to an auditory perception of
the ultrasound stimulus or other indirect effects
(figure 4).

The finding that low-intensity ultrasound has
the capacity to modulate overt, motor behavior in
humans following modulation of a deep brain nuc-
leus encourages the deployment of this approach in
precision diagnoses and treatments of the neural cir-
cuits involved in mental and neurological disorders,
as well as for dissecting the function of neural circuits
in humans.
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